A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions

نویسندگان

  • Abdon Atangana
  • Aydin Secer
  • Mustafa Bayram
چکیده

and Applied Analysis 3 Ta bl e 1: Fr ac tio na lo rd er de riv at iv es fo rs om ef un ct io ns . Fu nc tio ns Lfr ac tio na ld er iv at iv es x β , > − 1 x − α + β Γ ( 1 + β )

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

Numerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials

‎This paper provides the fractional derivatives of‎ ‎the Caputo type for the sinc functions‎. ‎It allows to use efficient‎ ‎numerical method for solving fractional differential equations‎. ‎At‎ ‎first‎, ‎some properties of the sinc functions and Legendre‎ ‎polynomials required for our subsequent development are given‎. ‎Then‎ ‎we use the Legendre polynomials to approximate the fractional‎ ‎deri...

متن کامل

An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order

In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014